1) The formula for calculating the volume of a rectangular wet well is

Where,	
V= volume	C=circumference
L= length	$\mathrm{P}=$ perimeter
W= width	$\mathrm{D}=$ diameter
A = area	H= height

2) Check valves are used on the discharge side of centrifugal pumps to
A) Equalize the pressure on both sides of the impeller
B) Prevent water in the suction line from flowing back into the reservoir
Right x C) Prevent water in discharge line from flowing back
D) Regulate the rate of water flow through the discharge pipe
3) How does the area of a(n) 42 inch sewer compare to a(n) 21 inch sewer?

a) The 42 in . area is 2.00 times larger than the 21 in. area.
b) The

42 in . area is
3.14 times larger than the

21 in. area.
c) The

42 in . area is 2.55 times larger than the 21 in. area.
d) The

42 in . area is
4.00 times larger than the

21 in. area.
Right

```
Area of 42 in.
    = D ' x . }78
    = 42 in. x 42 in. x. }78
    = 1385 in }\mp@subsup{}{}{2
Area of 21 in.
    = D N x . }78
    = 21 in. x }21\mathrm{ in. x. }78
    = 346.2 in 
```


Compare the 2 areas

$\frac{\text { Area of the } 42 \mathrm{in.}}{\text { Area of the } 21 \mathrm{in.}}=\frac{1385 \mathrm{in} .}{346 \mathrm{in.}}=4.00$ times larger
4) A lantern ring is a
A) Metal ring for lowering an explosive-gas detector candle into manholes and wet wells
B) Shaft coupling that has been completely worn through in spots or that has "daylighted"

Right
C) Spacer ring in a pump packing gland to improve seat water distribution
D) Type of coupling for joining pipes that will not be covered or put in the dark for at least 5 days
5) If a(n) 36 in. pipe and a(n) 42 in . pipe are running full and meet at a manhole, what minimum size outlet pipe will be required?

X
a) 56 inch

Right
b) 44 inch
c) 71 inch
d) 78 inch

Calculate the areas of both pipes,
Area of the 36 in. pipe =
Area of the 42 in. pipe $=$

$$
42 \text { in. } x 42 \text { in. } x .785=
$$

Add the two areas together
(The outlet pipe area must be big enough for both pipes.)

Use the area formula to back out the diameter

$$
\text { Area }=D^{2} \times .785
$$

$$
36 \text { in. } x 36 \text { in. } x .785=
$$

1,017.
1,017.4 in $1,384.7 \mathrm{in}^{2}$
1,017.4 in

$$
+\frac{1,384.7 \mathrm{in}^{2}}{2,402.1 \mathrm{in}^{2}}
$$

$$
D^{2} \times .785=2,402.1 \mathrm{in}^{2}
$$

$$
\mathrm{D}^{2}=\frac{2,402.1 \mathrm{in}^{2}}{.785}
$$

If you round down the decimal, the pipe will be too small. YOU MUST ROUND UP THE DECIMAL.

$$
\mathrm{D}^{2}=3,060.0 \mathrm{in}^{2}
$$

$$
D=\sqrt{3,060.0}=55.32 \mathrm{in} .
$$

56.0 inch

ALTERNATE METHOD;

Calculate the areas as if the pipe were square.
Using the method above, we multiplied the area by .785 , only to take it back out again later. This step can be skipped, but only in certain situations. If you are not sure, use the method above.

$$
\begin{array}{ll}
36 \text { in. } & \times 36 \mathrm{IN} .= \\
42 \mathrm{in.} . & \times 42 \mathrm{IN} .=-\frac{1,296 \mathrm{in.}^{3}}{1,764 \mathrm{in.}^{3}} \\
& \text { Total Area }= \\
3,060 \mathrm{in.}^{3}
\end{array} \quad A=\sqrt{3,060.0}=55.32 \mathrm{in} .
$$

6) Hydrogen sulfide is a toxic gas that smells like \qquad . At high concentrations of hydrogen sulfide, however, the sense of smell is deadened and no odor is detected.

7) What capacity blower is required to ventilate a manhole 48 in . in diameter and 62 feet deep, if 3 air change(s) is required every 6 minutes?
a) $130 \mathrm{Ft}^{3} / \mathrm{Min}$.
b) $389 \mathrm{Ft}^{3} / \mathrm{Min}$. Right
c) $2336 \mathrm{Ft}^{3} / \mathrm{Min}$.
d) $934 \mathrm{Ft}^{3} / \mathrm{Min}$.

FORMULAS NEEDED;

$\frac{\text { Volume }}{\text { Time }}=$ Flow

Convert inches to feet;

$\frac{48 \mathrm{in} .}{12 \mathrm{in} . / \mathrm{ft}}=4.0 \mathrm{ft}$.
Volume of a Cylinder $=D^{2} \times .785 \times$ Depth
$4.0 \mathrm{ft} . \times \quad 4.0 \mathrm{ft} . \mathrm{x} \quad .785 \times 62 \mathrm{ft} . \quad=778.7 \mathrm{Ft.}^{3}$
Formula;

$$
\begin{aligned}
\text { Flow } & =\frac{\text { Volume }}{\text { Time }} \\
& =\frac{778.7}{6 \mathrm{mt} .}{ }^{3} \\
& =129.8 \mathrm{Ft}^{3}{ }^{3}
\end{aligned}
$$

Multiply $\mathrm{ft} 3 / \min \mathrm{x}$ Number of air changes required;

$$
129.8 \mathrm{Ft} .^{3} / \mathrm{Min} \quad \times 3 \text { Air } \quad \text { Changes Req'd }=389 \mathrm{Ft.}^{3} / \mathrm{Min}
$$

7) A pH of 6.0 is

Right x A) Acid
B) Alkaline
C) Neutral
D) Basic
8) If a sewer must have a flow rate of 33 MGD with a velocity between $1.09 \mathrm{ft} / \mathrm{sec}$. and $2.25 \mathrm{ft} . / \mathrm{sec}$. What must the minimum size be?

X

a) 65 in. Right
b) 93 in .
c) 92 in .
d) 64 in .

FORMULAS NEEDED;

$\mathrm{ft}^{3} / \mathrm{sec}=155 \times \mathrm{M}$

$$
\text { Area }\left(\mathrm{ft}^{2}\right)=\mathrm{D}^{2} \times .785
$$

$\mathrm{ft}^{3} / \mathrm{sec} .=\mathrm{ft}^{2} \times \mathrm{ft} / \mathrm{sec}$.
(Flow = Area \times Velocity)

Convert MGD to $\mathrm{ft}^{3} / \mathrm{sec}$.

$$
\begin{aligned}
\mathrm{ft}^{3} / \mathrm{sec} . & =1.55 \times \mathrm{MGD} \\
& =1.55 \times 33 \mathrm{MGD} \\
& =51.2 \mathrm{ft}^{3} / \mathrm{sec} .
\end{aligned}
$$

Decide which velocity you will use;
If the question asks for the minimum pipe size, you will need to design the pipe toward the HIGHEST velocity
If the question asks for the maximum pipe size, you will need to design the pipe toward the LOWEST velocity
In this case, it asks for the minimum velocity, so you will use the 2.25 ft ./sec. velocity
Use the formula, $\mathrm{ft}^{3} / \mathrm{sec} .=\mathrm{ft}^{2} \mathrm{xf} . / \mathrm{sec}$. To get the area;
$\mathrm{ft}^{3} / \mathrm{sec} .=\mathrm{ft}^{2} \mathrm{ft} / / \mathrm{sec}$.
$51.2 \mathrm{ft}^{3} / \mathrm{sec} .=\mathrm{ft}^{2} \times 2.25 \mathrm{Ft} . / \mathrm{Sec}$.
$\frac{51.2 \mathrm{ft}^{3} / \mathrm{sec} .}{2.25 \mathrm{Ft} / \mathrm{Sec} .}=22.73 \mathrm{ft}^{2}$
Use the formula, Area $\left(\mathrm{ft}^{2}\right)=D^{2} x .785$ To get the $D^{2} \quad$ Then squaere root the D^{2}, to get the Diameter
$\begin{array}{rlrl}\begin{aligned} & \text { Area }\left(\mathrm{ft}^{2}\right)= \mathrm{D}^{2} \times .785 \\ & 22.73 \mathrm{ft}^{2}= \\ & \mathrm{D}^{2} \times .785\end{aligned} & \mathrm{D}^{2}= & \mathrm{D} \text { (Diameter) } \\ \frac{22.73 \mathrm{ft}^{2}}{.785}= & \mathrm{D}^{2} & 29.0 \mathrm{ft}^{2}= & 5.38 \mathrm{ft} . \\ \text { Convert to inches }\end{array}$
We are looking for the minimum velocity 64.0 in. would be too small \& cause the velocity to rise above $2.25 \mathrm{ft} / \mathrm{sec}$.
9) The purpose pf ribs on the outside of a Wayne Sewer Ball is to

[^0]10) A circular tank is 39 feet in diameter and 21 feet deep. If the tank is completely full and a 975 GPM pump is supplied, how long will it take to remove 11.5 feet of water from the tank?
a) 4 Hours, 23 Minutes
b) 1 Hours, 57 Minutes
c) 1 Hours, 45 Minutes Right
d) 1 Hours, 76 Minutes

FORMULAS NEEDED;

$$
\begin{array}{ll}
\text { Flow }=\frac{\text { Volume }}{\text { Time }} \quad & 1 \mathrm{ft}^{3}=7.48 \text { Gal. } \\
\text { Vol. of a Cylinder }=D^{2} \times .785 \times \text { Depth }
\end{array}
$$

Calculate the Cylinder Volume (ft^{3})

Vol. of a Cylinder $=D^{2} \times .785 \times$ Depth

$$
\begin{aligned}
& =39 \text { feet } \times 39 \text { feet } \times .785 \times \quad 12 \mathrm{ft} \text {. deep } \\
& =13,730.83 \mathrm{ft}^{3}
\end{aligned}
$$

Convert ft^{3} to Gallons;

$$
\text { 7.48 Gal./ft }{ }^{3} \text { x } 13,730.83 \mathrm{ft}^{3}=102,706.59 \text { Gallons }
$$

Calculate the Detention Time;

11) Your chlorinator room should have an exhaust vent installed
Right x B) Near the floor.
C) Halfway up the wall.
D) At the chlorinator bell jar.
12) Leakage of seal water around the packing on a centrifugal pump is required because it acts as a(n)

		B)
Right	x	C)

13) The flushing water pressure in a water-lubricated wastewater pump should be at least \qquad the pump discharge pressure.
A) 10 psi less than
B) 5 psi less than

Right x C) 5 psi more than
D) 10 psi more than
14) A wet well is 10 feet deep by 17 feet in diameter. When the pump is not running, the water rises 31.0 in . in 2 min . 48 sec . If the level rises 5.2 in . in 16.0 min . while the pump is running, what is the pump rate in GPM?

a) $1,612 \mathrm{Gal} . / \mathrm{Min}$.
b) $1,520 \mathrm{Gal} . / \mathrm{Min}$.

Right
c) $1,797 \mathrm{Gal} . / \mathrm{Min}$.
d) $9,209 \mathrm{Gal}$./Min.

FORMULAS NEEDED;

Volume of Cylinder $=D^{2} \times .785 \times$ Depth $\quad 1 \mathrm{ft}^{3}=7.48$ Gal.

$$
\text { Flow }=\frac{\text { Volume }}{\text { Time }}
$$

Simplify;

$$
\begin{aligned}
31.0 \mathrm{in} . & =2.6 \mathrm{ft} . \\
5.2 \mathrm{in} . & =0.4 \mathrm{ft} .
\end{aligned} \quad 2 \mathrm{~min},+\left\{\frac{48 \mathrm{sec} .}{60 \mathrm{sec} / \mathrm{min}}\right\}=\mathbf{2 . 8 0} \mathbf{~ m i n} .
$$

Calculate inflow with the pump off;

Volume of Cylinder $=\mathrm{D}^{2} \times .785 \times$ Depth

$$
\begin{aligned}
& =\quad 17 \mathrm{ft.} \times 17 \mathrm{ft.} \times .785 \times 2.6 \mathrm{ft} . \\
& = \\
& 586.07 \mathrm{ft}{ }^{3} \\
& \\
& =\quad \text { Convert to gallons; } \\
& =586.07 \mathrm{ft} .^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3}=4,383.79 \mathrm{Gal} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Flow }=\frac{\text { Volume }}{\text { Time }} \quad \text { Flow } & =\frac{4,383.79 \mathrm{Gal} .}{2.80 \mathrm{~min} .} \\
& =1,566 \mathrm{Gal} . / \mathrm{Min} . \quad \text { (Inflow) }
\end{aligned}
$$

Calculate change in volume with the pump on;

Volume of Cylinder $=\mathrm{D}^{2} \times .785 \times$ Depth

$$
\begin{aligned}
& =\quad 17 \mathrm{ft} . \times 17 \mathrm{ft} . \times .785 \times 0.4 \mathrm{ft} . \\
& =\quad 98.31 \mathrm{ft} .^{3} \\
& =\quad 98.31 \mathrm{ft.}^{3} \times 7.48 \mathrm{gal} / \mathrm{ft}^{3} \quad=735.35 \mathrm{Gal} . \\
& \\
\text { Flow }= & \frac{\text { Volume }}{\text { Time }} \quad \text { Flow }=\frac{735.35 \mathrm{Gal} .}{16.00 \mathrm{~min} .} \\
& =46 \mathrm{Gal} . / \mathrm{Min} .
\end{aligned}
$$

Add or subtract the change in volume to the inflo
The level rises when the pump is on.
This means the pump can not keep up subtract the from the 1,566 GPM Inflow.

1,566 GPM
$-\quad 46$ GPM
$\mathbf{1 , 5 2 0}$ GPM $=" B "$

15) What factors should be considered when providing trench shoring?
A) Grade of sewer.
B) Pipe material.
Right
C) Structures or sources of vibration near trenches.
D) All of the above.
16) Sewer "A" has 17,000 people at 95 GPCD. Sewer "B" has 13,800 people at 90 GPCD. Sewer "C" has 9,850 people at 85 GPCD. What percent of the flow is due to I\&I if the total plant flow is 4.50 MGD ?

a) 21.5%
b) 82.1%
c) 65.7%
d) 17.9%

Right

FORMULAS NEEDED;

GPCD = Gallons Per Capita Per Day

Add up known flows;

Sewer "A"	$1,615,000$ Gal./Day Sewer "B"
Sewer "C"	$1,242,000$ Gal./Day
	$+\quad 837,250$ Gal./Day

Subtract know flows from the plant flow to get to get I \& I; 4,500,000 Gal./Day | - $\quad 3,694,250 \mathrm{Gal} . / \mathrm{Day}$ |
| :--- |
| $805,750 \mathrm{Gal} / \mathrm{Day}$ | 805,750 Gal./Day

Divide I \& I flow by the plant flow \& multiply by 100 ;

$\frac{805,750 \text { Gal./Day }}{4,500,000 \text { Gal./Day }} \times 100=17.9 \%$
** Before picking your answer, look at your I \& I flows, does 805,750 Gal./Day I \& I look like it might be 17.9% of $4,500,000$ Gal./Day plsnt flow? If not, you probably divided by the wrong number.

Given the data below, what is the most likely cause of the lift station problem?

> DATA: Wet well inlet is normal
> Well drops normally when pump \#1 is running
> Well level rises slowly when pump \#2 or pump \#3 is running
> Run amperage is the same for all three pumps
> One of the pump motors turn backwards when off.
> Level system is reading correctly.
> Electrical controls are all in automatic.

A) Pump \#1 \& \#2 are air-bound
B) Pump \#1 check valve stuck open.
C) Either pump \#1 or \#2 is wired backwards
D) Check valve on pump \#3 is clogged.
18) Colored dye is dumped into a manhole. The dye first appears $4 \mathrm{~min} ., 6 \mathrm{sec}$. later in a manhole 850 feet downstream and disappears 5 min . and 17 sec . after the dye was first dumped into the manhole. What is the velocity of the flow in the sewer?

a) $2.68 \mathrm{Ft} . / \mathrm{Sec}$.
b) $3.02 \mathrm{Ft} . / \mathrm{Sec}$.
c) $3.46 \mathrm{Ft} . / \mathrm{Sec}$.
d) $0.66 \mathrm{Ft} . / \mathrm{Sec}$.

Right

FORMULAS NEEDED;

Convert Min., Sec. To Seconds; Dye first appears:

Dye disappears:

$$
\begin{array}{r}
5 \mathrm{~min} ., \quad \begin{array}{c}
17 \mathrm{sec} .= \\
5 \mathrm{~min} . \times 60 \mathrm{sec} . / \mathrm{min} .=
\end{array} \begin{array}{r}
300 \mathrm{sec} . \\
+17 \mathrm{sec} . \\
317 \mathrm{sec} .
\end{array}
\end{array}
$$

Average theStart \& finish times; $;$
$\frac{246 \mathrm{sec} .+317 \mathrm{sec} .}{2}=282 \mathrm{sec}$.

Use the formula to calculate the velocity;

$$
\begin{aligned}
\text { velocity }= & \frac{\text { Distance }}{\text { Time }} \\
& \frac{850 \mathrm{ft} .}{282 \mathrm{sec} .}=3.02 \mathrm{ft} . / \mathrm{sec} . \quad=\text { "B" }
\end{aligned}
$$

19) Task least likely to be preformed by collection systems personnel is
Right
A) Cleaning sewer stoppages
B) Making water connections
C) Inspecting/testing manholes
D) Maintaining collection systems equipment
20) When opening a power rodder properly, do the following
A) Push the rodding tool into an obstruction and hold it there
B) Rotate rod in one position

Right x
C) Make sure all the torque is out of a broken rod
D) Rod past dropped joints or through a crushed pipe
21) An electric motor is supplied by

480 v and 32 amps , given no loss, what horsepower can the motor supply to the water?
a) 64.2 HP
b) 2.0 HP
c) 20.6 HP

Right
d) 30.9 HP

FORMULAS NEEDED;

Watts = Amps \times Volts, $\quad 1 \mathrm{HP}=746 \mathrm{~W}$ atts

Calculate Watts;

Volts \times Amps $=W$ atts
$480 \mathrm{v} \mathrm{x} 32 \mathrm{a}=15,360 \mathrm{~W}$ atts
Convert Watts to HP;
$1 \mathrm{HP}=746 \mathrm{~W}$ atts
$\frac{15,360 \mathrm{~W} \text { atts }}{746 \mathrm{watts} / \mathrm{HP}}=20.6 \mathrm{HP}$
= "C"
22) In keeping records,
A) Every test result should be included in an annual report.
B) Poor records are better than no records
C) Records should be destroyed every two years.

Right x
D) Records should be kept up-to-date and maintained as long as they are useful.
23) A $4,160 \mathrm{v}$ motor draws 21 amps . What is the brake horsepower if the pump is 85% efficient and the motor power factor is . 91 ?

\mathbf{x}

a) 90.6 HP
b) 117.1 HP
c) 5.1 HP
d) 106.6 HP

Right

FORMULAS NEEDED;

$1 \mathrm{hp}=746 \mathrm{~W}$ atts
Amp $\leq x$ Volts $=W$ atts

1) 1) Calculate Watts;

Amps x Volts $=W$ atts
$21 \mathrm{a} \times 4,160 \mathrm{v}==87,360$ watts
2) Calculate Input (wire) HP;
$1 \mathrm{hp}=746 \mathrm{~W}$ atts $\frac{87,360 \text { watts }}{746 \mathrm{~W} \text { atts } / \mathrm{HP}}=117.1 \mathrm{HP}$

2) Calculate $B H P$;
$117.1 \mathrm{HP} \times .91=106.6 \mathrm{HP}$
= 'D"
24) Which one of the following would not be considered a natural event?

Right x A) Explosion.
B) Flood.
C) Lightning.
D) Tornado.
25) What information must be on a warning tag attached to a switch that has been locked out?

[^1]26) Calculate the water horsepower if the pump it operates provides 875 GPM against 118 feet total dynamic head (TDH)?

a) 101 HP
b) 55 HP
c) 7 HP
d) 26 HP

Right
27) If the pump in problem 26 is 79% efficient, then what is the brake HP?
\mathbf{x}
a) $33.0 \mathrm{HP} \quad$ Right
b) 70.2 HP
c) 9.4 HP
d) 43.8 HP

FORMULAS NEEDED;

Calculate HP:

$$
\begin{aligned}
& \text { WHP }=\frac{875 \mathrm{GPM} \mathrm{X} \quad 118 \text { feet }}{3960} \\
& \mathbf{W H P}=\mathbf{2 6 . 1} \mathbf{~ H P ~ ' D ' ~}
\end{aligned}
$$

Problem \#27;

Calculate BHP;

$\frac{\text { WHP }}{\text { Eff. }}=\mathrm{BHP} \quad \frac{26 \mathrm{HP}}{.79}=33.0 \mathrm{HP}=" \mathrm{~A} "$
28) Why are gasoline and volatile solvents objectionable where present in a sewer?

Right x A) They produce an explosion hazard
B) They tend to cause the solids to vaporize
C) They will coagulate floatables and cause stoppages
D) They represent wasted recourses
29) If you were in charge of a large operation with four foremen, three whose work was exceptionally good and a fourth whose work was substandard, what should you do?
A) Demote the substandard Forman and bring up a replacement from the ranks
B) Discuss the problem with the substandard Forman and offer to help before any other action is taken.
C) Find a replacement, then fire the substandard Forman.
D) Wait to see if the substandard Forman does better.
30) A pump has an efficiency of 91% and a motor has a power factor of .93. If the water horsepower is 334 HP and electricity has a cost of 11.0 cents per KWH, how much will it cost to run the pump for one month, (31 days) at $12.0 \mathrm{hrs} . / \mathrm{day}$?

\mathbf{x}

a) $\$ 12,047.49 / \mathrm{mo}$. Right
b) $\$ 10,963.22 / \mathrm{mo}$.
c) $\$ 3,109.31 / \mathrm{mo}$.
d) $\$ 8,032.37 / \mathrm{mo}$.

FORMULAS NEDED;

$1 \mathrm{HP}=746 \mathrm{~W}$ atts or $1 \mathrm{HP}=.746 \mathrm{KW}$

1) Convert WHP to Brake HP;

$$
\frac{334 \mathrm{HP}}{.91}=367.0 \mathrm{HP}
$$

2) Convert BHP to Wire HP;
 $\frac{367 \mathrm{HP}}{.93}=394.7 \mathrm{HP}$

3) Convert Wire HP to KW (Kilowatts);

$1 \mathrm{HP}=.746 \mathrm{KW}$
394.7 HP x . 746 KW per HP $=294.4 \mathrm{KW}$
3) To find the Cost, multiply KW \times Hrs. $\times \$ / \mathrm{hr}$. \times Days
294.4 KW x $12.0 \mathrm{hrs} . / d a y \quad x .11$ cents/KW \quad x 31 days/month $=\mathbf{\$ 1 2 , 0 4 7 . 4 9}$ permo. = "A"
31) Which of the following is a type of shore?
Right
A) Bar
B) Aluminum hydraulic
C) Truss
D) Sand
32) You should never attempt to install, troubleshoot, maintain or replace electrical equipment panels, controls, wiring, or circuits unless
A) A manhole is overflowing down a street
B) A pump is unplugged
C) You are receiving a lot of odor complaints

Right x
D) You know what you are doing, are qualified, and are authorized
33) $37 \mathrm{mg} / \mathrm{l}$. of chlorine is required to treat a flow of 50.0 MGD . The solution available to you, however, is only 74% of chlorine. How many lbs./day of solution are requires to treat the flow?
a) $85,403 \mathrm{lbs} . / \mathrm{day}$
b) $20,850 \mathrm{lbs} . / \mathrm{day}$ Right
c) $15,429 \mathrm{lbs} . / \mathrm{day}$
d) $1,024,012$ lbs./day

FORMULAS NEEDED;

lbs./day $=$ MGD x mgl $\times 8.34$

1) Use formula to Calculate Ibs.Iday;
lbs./day $=$ MGD $\times \mathrm{mgl} \times 8.34$
$=50 \mathrm{MGD} \times 37 \mathrm{mg} / \mathrm{l} \times 8.34$
$=15,429 \mathrm{lbs} . / \mathrm{day}$

2) The solution is only 74% pure. You will need more;

How much more?

$$
\frac{15,429 \mathrm{lbs} . / \mathrm{day}}{.74(74 \%)}=\mathbf{2 0 , 8 5 0} \text { lbs./day }
$$

34) A venture meter measures quantity of fluid by

Right | x | A) difference in pressure between a constricted and a full-size portion |
| :--- | :--- |

B) electronic measurement
C) velocity of the fluid past a given point
D) weight of the fluid
35) $49 \mathrm{mg} / \mathrm{l}$. of root control must be added to a 42 in . sewer that is 2,125 feet long. If the root control chemical is in a solution that consists of only 38% of the chemical, how many lbs. of the solution must be added to the sewer?
a) 164.38 lbs

Right

b) 23.74 lbs .
c) 183.28 lbs .
d) 3,418.02 lbs.

FORMULAS NEEDED;

lbs./day $=$ MGD $\times \mathrm{mgl} \times 8.34$
Volume of a cylinder $=D^{2} \times .785 \times \mathrm{L}$ $1 \mathrm{ft}^{3}=7.48$ Gallons
(42 in.)

1) Calculate the Volume of Pipe, then convert to Million Gallons;

Volume of a cylinder $=D^{2} \times .785 \times L$
$3.5 \mathrm{ft} . \times 3.5 \mathrm{ft} . \quad x 2,125 \mathrm{ft} . \times .785=20,435 \mathrm{ft} .^{3}$
$1 \mathrm{ft}^{3}=7.48$ Gallons
2) Use formula to Calculate Ibs.Iday;
lbs./day $=$ MGD x mgl x 8.35
lbs./day $=.15$ MGD x $49 \mathrm{mg} / \mathrm{l} . \times 8.34$
lbs./day = $62 \mathrm{lbs} . / \mathrm{day}$
3) The chemical is only 38% pure. You will need more;
$\frac{62 \mathrm{lbs} . / \mathrm{day}}{.38}=164.38 \mathrm{lbs} . / \mathrm{day}$
= "A"
36) On Monday A flow totalizer read $11,156,800 \mathrm{gal}$. On Thursday the totalizer read 114,081,002 gal. What was the daily average flow?

a) 114.08 MGD
b) 25.73 MGD
c) 40.03 MGD
d) 34.31 MGD

1) Subtract the two readings to determine how many gallons passed through;
$114,081,002 \mathrm{gal}$.

- 11,156,800 gal. $102,924,202 \mathrm{gal}$.

1) Divide by the number of FULL days that passed;

$$
\frac{102,924,202 \text { gal. }}{3 \text { Days }}=34.31 \mathrm{MGD}
$$

= "B"
37) Enclosed, open, and semi-closed are terms used for the designation and selection of

Right | x | $A)$ |
| :--- | :--- |
| | A) Impellers |

B) Lantern rings
C) Sleeves
D) Stuffing Boxes
38) If the grade of a sanitary sewer has a slope of 0.50% for 350 feet, what is the rise of the pipe?

FORMULAS NEEDED;

SLOPE $=\frac{\text { RISE }}{\text { RUN }}$

$$
\begin{aligned}
& (\text { Slope }=0.50 \% \text { or } .01) \\
& .005=\frac{R \text { RISE }}{350 \mathrm{ft} .} \\
& .005 \times 350 \mathrm{ft} .=\text { RISE } \\
& .005 \times 350 \mathrm{ft} .=1.75 \mathrm{ft} .=" \mathrm{~B} "
\end{aligned}
$$

Slope $=$
39) What must be checked before entering a manhole?

[^2]40) A crew surveys a sewer from STA. 9+ 54.00 to STA $32+65.25$ If the elevation of the manhole (farthest to the traetment plant) is 742.6 feet, what is the elevation of the second manhole if the grade is 0.0017 FT/FT,
a) $\quad 3.9$ Feet
b) 738.7 Feet Right
c) 746.5 Feet
d) 7.4 Feet

FORMULAS NEEDED;

$\frac{\text { RISE }}{\text { RUN }}=$ SLOPE

1) Convert survey station numbers into feet, then Calculate Run;
STA $32+65.25=32$ hundred $+65.25=3,265.25 \mathrm{ft}$. STA $9+54.00=9$ hundred $+54.00=954.00 \mathrm{ft}$.

2) Calculate Slope;

$$
\frac{\text { RISE }}{2,311.25 \mathrm{ft} .} \quad=0.0017 \mathrm{ft} / \mathrm{ft}
$$

RISE $=.0017 \mathrm{ft} / \mathrm{ft} x \quad 2,311.25 \mathrm{ft}$.
RISE $=3.93 \mathrm{ft}$.
3) Add or Subtract the 'rise' to get the other Elevation;

The manhole farthest is at 742.6 ft . So, the other manhole must be LOWER.

You SUBTRACT the 'rise' from 742.6 ft .

742.60 ft .

$$
\frac{-\quad 3.93 \mathrm{ft} .}{738.67 \mathrm{ft} .}=\text { " } \mathrm{B} "
$$

742.6 ft .
(Higher Elevation)
(Lower Elevation)
41) Which of the following is not typical of a "submersible" pump?
A) Can be installed in a crooked hole.
B) Minimizes vandalism.
C) Quieter operation.
Right x
D) Requires water lubrication.
42) A map with a scale of 0.625 in. $=100$ feet indicates that manhol" A " is 7.50 in . from manhole " B " What is the actual distance between manholes?

a) $\quad 4.7 \mathrm{ft}$.
b) $\quad 8.3 \mathrm{ft}$.
c) $1,200.0 \mathrm{ft}$. Right
d) 83.3 ft .
$\frac{\text { Scale factor x Measurement }}{\text { Scale }} \quad$ '=Actual Diatance
$\frac{7.50 \mathrm{in} . \mathrm{x} 100 \mathrm{ft} .}{0.625 \mathrm{in} .}=\mathbf{1 , 2 0 0 . 0}$ feet,
43) Biological activity in long, sluggish-flow, flat-grade sewer lines will likely

Right		A) Decrease line sediment
x	B) Create oxygen deficiency in the air in manholes, sewers, or wet wells	
	C) Stop toxic gas production	
\square	D) Increase the "carrying capacity" of the line	

44) If a repair job can be done by 14 people in 17 hours, how long will it take for 5 people to do a similar job?
a) 12 Hours, 0 min .
b) 47 Hours, 6 min .
c) 6 Hours, 4 min .
d) 47 Hours, 36 min . Right

1) Set up the problem;

If a repair job can be done by 14 people in 17 hours,
then it would take 5 people, $\frac{14}{5}$ of the time.
So, $17 \mathrm{hrs.x} \frac{14}{5}=47.6 \mathrm{hrs}$.

2) Convert Decimal Hours yo Hours, Minutes;

$47.6 \mathrm{hrs} .=47 \mathrm{hrs} .+(.60 \mathrm{hrs} . \times 60 \mathrm{sec} . / \mathrm{hr})=.36 \mathrm{~min}$.

$$
=47 \text { hrs., } 36 \mathrm{~min} . \quad=\text { "D" }
$$

45) Biological hazards in collection system operations include

[^3]46) A trench is dug at $\quad 13 \mathrm{ft}$. wide $\mathrm{x} \quad 9 \mathrm{ft}$. deep $\mathrm{x} \quad 1,654 \mathrm{ft}$. long. A 21 in . Sewer is going to be installed in this trench. 16 in . must be left out of the top for concrete. How much backfill will be required to fill the trench?

\mathbf{x}

a) $5,958 \mathrm{Yd}^{3}$

Right

b) $17,875 \mathrm{Yd}^{3}$
c) $160,872 \mathrm{Yd}^{3}$
d) $7,020 \mathrm{Yd}^{3}$
47) How many tons of backfill would there be in problem 51 if the backfill material weighed
$3,724 \mathrm{lbs} . / \mathrm{cu} . \mathrm{yd}$.?

48) If a loaded dump truck could haul 18 tons each, how many truck loads would be needed in problem 47 ?

a) 616 Trucks
b) 727 Trucks
c) 617 Trucks

Right
d) 16,642 Trucks

FORMULAS NEEDED;

Volume of a rectangle $=\mathrm{L} \times \mathrm{W} \times \mathrm{H} \quad 1$ ton $=2,000 \mathrm{lbs}$.
Volume of a cylinder $=D^{2} \times .785 \times \mathrm{L} \quad 1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}{ }^{3}$

$\begin{array}{rlr}= & 1,654 \mathrm{ft} . \mathrm{x} 13 \mathrm{ft} . \mathrm{x} & 7.67 \mathrm{ft} . \\ = & 164,849 \mathrm{ft.}^{3} & \\ & \text { Convert to } \mathrm{yd}^{3} \\ & \frac{164,849 \mathrm{ft}^{4}}{{ }^{4}}=6,106 \mathrm{cu} . \mathrm{yd} . & 21 \mathrm{in} .=\end{array}$ $\frac{164,849 \mathrm{ft}^{4}}{27 \mathrm{ft}^{3} / \mathrm{yd}^{3}}=6,106 \mathrm{cu} . \mathrm{yd}$.
2) Calculate the volume of the pipe (in Yd^{3});

3) Subtract pipe volume from trench volume;

Volume of a cylinder $=D^{2} \times .785 \times L$
This will give you the volume of fill.

$$
\begin{aligned}
& =\quad 1.75 \mathrm{ft} . \times 1.75 \mathrm{ft} . \mathrm{x} .785 \mathrm{x} \quad 1,654 \mathrm{ft} . \\
& =\frac{3,976.3 \mathrm{cu} . \mathrm{ft}}{27 \mathrm{ft}^{3} / \mathrm{yd}^{3}}=147 \mathrm{cu} . \mathrm{yd} .
\end{aligned}
$$

$$
\begin{array}{r}
6,106 \mathrm{yd}^{3} \\
-147 \mathrm{yd}^{3}
\end{array} \quad \begin{aligned}
& \text { " } 51=" A "
\end{aligned}
$$

3) Calculate the wieght of fill in tons;

$5,958.2 \times 3,724 \mathrm{lbs} . \mathrm{cu} . \mathrm{yd} .=\frac{22,188,467 \mathrm{lbs} .}{2,000 \mathrm{lbs} . / \mathrm{ton}}=11,094$ tons
="A"
3) Calculate the wieght of fill in tons;
$\frac{11,094.2 \text { tons }}{18 \text { tons/truck }}=616.3$ Trucks You must round up to 617.0 Trucks or there will be .3 truckoads left over.
617 Trucks $={ }^{\prime} C^{\prime}$
49) Given the following information, would it be less expensive to finish the job is 2 days, or finish the job in one day by working overtime?

Actual job time $=15.00 \mathrm{hrs}$
Travel time \& set-up time $=1.50 \mathrm{hrs}$
Average W ork day $=8.00 \mathrm{hrs}$
Hourly pay rate $=\$ 18.25$
Overtime is 1.50 times the normal hourly rate

a) Cheaper to do the work with O.T.
b) Cheaper to do the work in two days Right
c) Costs the same either way
d) None of the above

CALCULATE THE COST BOTH WAYS

1) Cost for completing the work in one day, with overtime;

(Add up the total hours worked, then
subtract 8.00 hours to determine hours paid at O.T.)
15.00 hrs (Actual job time)

+ 1.50 hrs (Travel time \& set-up time)
- 8.00 hrs (straight time)
8.50 hrs (paid at O.T. Rate)
(Convert O.T. hours to straight time hours)
8.50 hrs O.T. $\times 1.50=12.75$ hrs. pay
(Add them together for total hours paid)
$\mathbf{1 2 . 7 5}$ hrs.pay $+\mathbf{8 . 0 0} \mathbf{h r s}=\quad 20.75$ hrs. total pay

2) Cost for doing the work in two days
1.50 hrs (Set-up, Day 2)
1.50 hrs (Set-up, Day 1)
$+15.00 \mathrm{hrs}$
18.00 hrs (Total pay)
3) The average cost for contractors to clean the city sewers is $\$ 6.80$ per foot for 1.80 miles of 15 in . pipe, and $\$ 7.85$ The city is considering purchasing a new jet \& vac truck for Operator "A" makes \$19.57 per hour, operator "B" makes $\$ 17.89$ per hour. Health care \& benefits cost 37% of wages.

The cost/year of the jet truck will be $\$ 31,275.00$ for 10 years. The time for the crew to clean 100 feet of sewer is as follows:

$12 "$ " sewer takes	1.50 hours.
$15 "$ sewer takes	3.25 hours.
18 " sewer takes	4.00 hours.

.50 hours. of non-productive time (travel, cleanup, etc.) will be used for every hour spent cleaning sewers Which is the least expensive option (contractor or in-house) and by how much over the 10 year period?
a) Cheaper to buy a jet-vac, cost savings will be $\$ 625,505.80$
b) Cheaper to contract out, cost savings will be $\$ 502,906.66$
c) Cheaper to buy a jet-vac, cost savings will be $\$ 62,863.33$
d) Cheaper to contract out, cost savings will be $\$ 61,925.07$

Convert miles of sewer to feet .

size	miles		feet/mile	feet
12 in. =	1.60 miles	x	5,280 ft./mile	8,448 ft.
15 in. $=$	1.80 miles	x	5,280 ft./mile	9,504 ft.
18 in. $=$	1.70 miles	x	5,280 ft./mile	8,976 ft.

CONTRACTOR COST/YEAR:

Convert feet of sewer cost.

feet	x	cost/ft.	=		total	
8,448 ft.	x	\$ 5.95	=	\$	50,265.60	(12 in.)
9,504 ft.	x	\$ 6.80	=	\$	64,627.20	(15 in.)
8,976 ft.	x	\$ 7.85	=	\$	70,461.60	(18 in.)
				\$	185,354.40	тот

IN HOUSE COST/YEAR

1) Calculate labor cost/hr.

Add wages of $A, B \& C$ operators.

+\begin{tabular}{lll}

\& | $\$ 19.57$ |
| :--- |
| $\$ 18.59$ | \& (Operator A)

(Operator B)

(Operator C)

$\$ 17.89$
\end{tabular}\quad (Total hourly rate)

hourly rate	 clean up		fringe benefits	Total labor Cost/hr.
\$56.05	1.50 hrs .	x	1.37	\$115.18

2) Set up grid to calculate in-house costs.

10 year cost difference		
$\$ 62,550.58 \quad x$	$=$	$\$ 625,505.80$ $=$

[^0]: A) Allow the ball's weight to be closer to the ball's center
 B) Avoid patent infringement that would apply if a non-ribbed ball were used

 Right x
 C) Cause jet action to aid in the hydraulic flushing of the sewer line
 D) Reinforce (strengthen) the ball

[^1]: A) Direction for removing tag
 B) Name of the nearest physician to call in case of an emergency

 Right x
 C) Signature of person who locked out the switch, who is the only person authorized to remove tag
 D) Time to unlock switch

[^2]: A) Atmosphere in manhole
 B) Safety equipment
 C) Proper barricades or warning devices around a manhole

 Right x D) All of the above

[^3]: A) Noxious or toxic gases or vapors
 B) Oxygen deficiency
 C) Physical injuries

 Right x D) Hepatitis A

